Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 2): 130850, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492706

RESUMO

Recent decades have witnessed a surge in research interest in bio-nanocomposite-based packaging materials, but still, a lack of systematic analysis exists in this domain. Bio-based packaging materials pose a sustainable alternative to petroleum-based packaging materials. The current work employs bibliometric analysis to deliver a comprehensive outline on the role of bio nanocomposites in packaging. India, Iran, and China were revealed to be the top three nations actively engaged in this domain in total publications. Islamic Azad University in Iran and Universiti Putra Malaysia in Malaysia are among the world's best institutions in active research and publications in this field. The extensive collaboration between nations and institutions highlights the significance of a holistic approach towards bio-nanocomposite. The National Natural Science Foundation of China is the leading funding body in this field of research. Among authors, Jong whan Rhim secured the topmost citations (2234) in this domain (13 publications). Among journals, Carbohydrate Polymers secured the maximum citation count (4629) from 36 articles; the initial one was published in 2011. Bio nanocomposite is the most frequently used keyword. Researchers and policymakers focussing on sustainable packaging solutions will gain crucial insights on the current research status on packaging solutions using bio-nanocomposites from the conclusions.


Assuntos
Bibliometria , Nanocompostos , Humanos , Publicações , Embalagem de Produtos , Mineração de Dados
2.
Chemosphere ; 354: 141593, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460854

RESUMO

This study presents an innovative method for synthesizing activated carbon with an exceptionally high surface area (3359 m2 g-1) using kenaf fiber-based biochar through chemical activation. The achieved specific surface area surpasses activated carbon derived from other reported fiber-based precursors. The resulting activated carbon was investigated as electrodes for supercapacitors, revealing a remarkable maximum capacitance of 312 F g-1 at a current density of 0.5 A g-1. An aqueous symmetric supercapacitor employing these high-surface-area electrodes exhibited an outstanding energy density of 18.9 Wh kg-1 at a power density of 250 W kg-1. Notably, the supercapacitor retained exceptional capacitance, maintaining 93% of its initial capacitance even after 5000 charge-discharge cycles.


Assuntos
Carvão Vegetal , Hibiscus , Capacitância Elétrica , Eletrodos
3.
ACS Omega ; 7(48): 43981-43991, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506175

RESUMO

Ternary nanocomposites synergistically combine the material characteristics of three materials, altering the desired charge storage properties such as electrical conductivity, redox states, and surface area. Therefore, to improve the energy synergistic of SnO2, TiO2, and three-dimensional graphene, herein, we report a facile hydrothermal technique to synthesize a ternary nanocomposite of three-dimensional graphene-tin oxide-titanium dioxide (3DG-SnO2-TiO2). The synthesized ternary nanocomposite was characterized using material characterization techniques such as XRD, Raman spectroscopy, FTIR spectroscopy, FESEM, and EDXS. The surface area and porosity of the material were studied using Brunauer-Emmett-Teller (BET) studies. XRD studies showed the crystalline nature of the characteristic peaks of the individual materials, and FESEM studies revealed the deposition of SnO2-TiO2 on 3DG. The BET results show that incorporating 3DG into the SnO2-TiO2 binary nanocomposite increased its surface area compared to the binary composite. A three-electrode system compared the electrochemical performances of both the binary and ternary composites as a battery-type supercapacitor electrode in different molar KOH (1, 3, and 6 M) electrolytes. It was determined that the ternary nanocomposite electrode in 6 M KOH delivered a maximum specific capacitance of 232.7 C g-1 at 1 A g-1. An asymmetric supercapacitor (ASC) was fabricated based on 3DG-SnO2-TiO2 as a positive electrode and commercial activated carbon as a negative electrode (3DG-SnO2-TiO2//AC). The ASC delivered a maximum energy density of 28.6 Wh kg-1 at a power density of 367.7 W kg-1. Furthermore, the device delivered a superior cycling stability of ∼97% after 5000 cycles, showing its prospects as a commercial ASC electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...